Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Ying Fu, Jian-Min Dou,* Da-Cheng Li and Da-Qi Wang

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059,
People's Republic of China

Correspondence e-mail: jmdou@Ictu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.158$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(N, N^{\prime}-Bis\{[1-(2-oxidophenyl)ethylene]aminoethyl\}ethylenediamine)cobalt(III) chloride methanol solvate hydrate

The title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right] \mathrm{Cl} \cdot \mathrm{CH}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$, consists of one ligand L^{2-} ($L=\left(N, N^{\prime}\right.$-bis ((1-(2-hydroxyphenyl)ethylene)amino)ethyl)aminoethylamine), one cobalt ion, one chloride ion, one methanol molecule and one water molecule. The cobalt(III) exhibits a distorted octahedral $\mathrm{CoN}_{4} \mathrm{O}_{2}$ coordination. There are four unique $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between the hexadentate ligand L^{2-}, the solvent molecules and the chloride ions. The hydrogen bonds link the residues of two asymmetric units into a discrete cluster, located about an inversion centre.

Comment

In recent years, there has been considerable interest in metal complexes supported by tripodal ligands due to their chemical and biological activities (Moreno et al., 2005; Deroche et al., 1996). However, only a few cobalt tripodal complexes have been synthesized, such as $\left[\mathrm{Co}\left(\mathrm{C}_{21} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}($ Myunghyun et al., 1997), $\left[\mathrm{Co}\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\left(\mathrm{ClO}_{4}\right)_{3}\right] \mathrm{H}_{2} \mathrm{O}$ (McLachlan et al., 1995) $\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{ClO}\right)\right]\left[\left(\mathrm{ClO}_{4}\right)_{2}\right] \mathrm{H}_{2} \mathrm{O}$ (McLachlan et al., 1995) and $\left[\left[\mathrm{Co}\left(\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3}\right)\right]\left[\left(\mathrm{PF}_{6}\right)_{2}\right]\right.$ $\mathrm{CH}_{3} \mathrm{CN}$ (Gou et al., 1993). Recently, we have synthesized the title compound, (I), and we report here its crystal structure.

The asymmetric unit (Fig. 1) consists of one ligand L^{2-}, one cobalt ion, one chloride ion, one methanol molecule and one water molecule. The geometry around the cobalt center (Table 1) is a slightly distorted octahedron with composition $\mathrm{CoN}_{4} \mathrm{O}_{2}$. The average $\mathrm{Co}-\mathrm{N}$ distance is 1.945 (3) \AA and the average $\mathrm{Co}-\mathrm{O}$ distance is 1.900 (3) \AA. The coordinating N and O atoms are all supplied by the ligand L^{2-}, which forms two six-membered rings and three five-membered rings with the Co atom.

The finite hydrogen-bonded cluster (illustrated in Fig. 2) displays four unique hydrogen bonds of types $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-$

Received 24 May 2006
Accepted 11 August 2006

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at 30\% probability level and H atoms have been omitted for clarity.

Figure 2
The six-membered hydrogen-bond donor/acceptor ring. Dashed lines indicate hydrogen bonds. [Symmetry codes: (a) $1-x, 1-y, 1-z$; (b) x, $y, z-1$; (c) $1-x, 1-y,-z$.
$\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$. The hydrogen bonds interact, forming a six-membered donor/acceptor ring located about a crystallographic inversion centre. The six-membered rings are linked to two neighbouring molecules.

Experimental

Ligand $L(1 \mathrm{mmol}, 0.382 \mathrm{~g}), \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}(3 \mathrm{ml})$ and $\mathrm{CoCl}_{2}(1 \mathrm{mmol}$, 0.13 g) were dissolved in a mixture of methanol, acetonitrile and 1,2dichloroethane (1:1:1 v/v/v). The solution was refluxed for about 4 h with stirring and a red solution was formed. About a week later, red crystal were isolated from the solution [m.p. 430-431 K (decomposition)].

Crystal data
$\left[\mathrm{Co}\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right] \mathrm{Cl} \cdot \mathrm{CH}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$

$$
Z=4
$$

$M_{r}=524.92$
Monoclinic, $P 2_{1} / c$
$a=14.875$ (5) A
$b=11.708$ (4) \AA
$c=14.040$ (5) A
$\beta=97.110(5)^{\circ}$
$V=2426.3(14) \AA^{3}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan SADABS (Sheldrick, 1996)
$T_{\text {min }}=0.695, T_{\text {max }}=0.726$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.158$
$S=1.02$
4270 reflections
302 parameters
H -atom parameters constrained

$$
D_{x}=1.437 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation $\mu=0.85 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, red
$0.46 \times 0.43 \times 0.40 \mathrm{~mm}$

12440 measured reflections
4270 independent reflections
3170 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.0^{\circ}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$1.884(3)$	$\mathrm{Co} 1-\mathrm{N} 3$	$1.929(3)$
$\mathrm{Co} 1-\mathrm{N} 2$	$1.910(3)$	$\mathrm{Co} 1-\mathrm{N} 1$	$1.965(3)$
$\mathrm{Co} 1-\mathrm{O} 2$	$1.916(3)$	$\mathrm{Co} 1-\mathrm{N} 4$	$1.975(3)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$90.51(12)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 4$	$93.75(14)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	$87.43(11)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 3$	$85.10(13)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 3$	$98.29(12)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 1$	$95.88(13)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$174.55(13)$	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{N} 4$	$84.02(13)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 4$	$91.12(13)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 1$	$86.32(14)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 2$	$176.94(13)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{N} 4$	$165.27(14)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3$	$97.45(13)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$84.95(14)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	$86.00(13)$		

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 1$	0.90	2.33	$3.190(4)$	159
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.82	2.22	$3.011(6)$	163
$\mathrm{O}^{\mathrm{ii}}-\mathrm{H} 1 \cdots \mathrm{O} 3^{1}$	0.88	2.26	$2.909(6)$	131
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{Cl} 1$	0.83	2.31	$2.976(4)$	137

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y, z-1$.

The water H atoms were located in a difference Fourier map and included in the refinement riding on their parent atoms. All other H
atoms were positioned geometrically and treated as riding on their parent atoms, with benzene $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, methylene $\mathrm{C}-$ H distances of $0.97 \AA$, methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$, methanol hydroxyl $\mathrm{O}-\mathrm{H}$ distances of 0.82 A , amino $\mathrm{N}-\mathrm{H}$ distances of 0.90 A . The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: Bruker SMART (Siemens, 1996); cell refinement: Bruker SAINT (Siemens, 1996); data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: Bruker SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: Bruker SHELXTL.

The authors acknowledge the support of the Natural Science Foundation of Shandong Province. People's Republic of China (Y2003B01).

References

Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. \& Houee-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567-4573.
Gou, S. H., You, X. Z., Yu, K. B. \& Lu, J. P. (1993). Inorg. Chem. 32, 18831887.

McLachlan, G. A., Brudenell, S. J., Fallon, G. D., Martin, R. L., Spiccia, L. \& Tiekink, E. R. T. (1995). J. Chem. Soc. Dalton Trans. pp. 439-447.
Moreno, R. G. M., Alipázaga, M. V., Medeiros, M. H. G. \& Coichev, N. (2005). Dalton Trans. pp. 1101-1107.
Myunghyun, P. S., Jaeho, L., Mi, Y. H. \& Tea, S. Y. (1997). Inorg. Chem. 36, 5651-5654.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Software Reference Manual, Bruker AXS, Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART (Version 5.0) and SAINT (Version 5.1). Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

